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particle detectors (Bubble chambers)

• Bubble chambers

• A piston would release suddenly 
changing the pressure allowing 
bubbles to form

• Visible tracks made

• Took pictures

• It worked (detected neutral current)

• Slow (recompression ~1sec), low 
density, not very scaleable
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The Road to LArTPCs

• 1974:  W. Willis and V. Radeka propose LAr ionization chambers

• Idea was to use sampling plates in LAr for calorimetry

satisfies the requirements better than any other material: 
i) it is dense" (1.4 g/cm3); 

ii) it does not attach electrons; 
iii) it has a high electron mobility ( ~  5 mm//~s at 

1 kV/mm); 
iv) the cost is low ($0.14-+0.50/kg, depending on 

source and quantity); 
v) it is inert, in contrast to flammable scintillators; 

vi) it is easy to obtain in a pure form and easy to 
purify; 

vii) many electronegative impurities are frozen out 
in liquid argon. 

The disadvantage is that the container must be 
insulated for liquid-argon temperature (86 K). 

Some of the properties 7) of such a device are illus- Willis & Radeka, NIM 120 (1974)	


One

Many
Benefits of LAr:
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The Road to LArTPCs

• 1974:  D. Nygren proposes the time-projection chamber

• For the PEP collider at SLAC

• Gas mixtures (e.g. Ar+Methane)
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How Do Particles Interact in Liquid Argon

• Charged particle passes 
through

• Argon is ionized or forms 
an excited state

• De-excite non-radiatively to 
either singlet or triplet state

• Decay into the ground state 
by emitting a 128 nm 
photon
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Particle Interaction in LAr:  Scintillation Light

• Red:  Energy of scintillated photon

• Green:  Energy of excited Ar 
molecule

• Blue:  Energy of ionized pair

• The red is less than the other two

• The scintillated photon is not 
energetic enough to put the 
argon into an excited state

• So argon is transparent to its 
scintillation light
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Signal Dependence on E Field

• If the LAr is in an E field, we can drift some 
of these liberated electrons away before 
they are reabsorbed

• The amount of these signal electrons 
depends upon the electric field:

• More electric field 
= more electrons

• Less field = 
more recombination 
(more light emitted 
from recombination) L.
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How Would This Work

• Energy loss by charged particles → 
Ionization & excitation of Ar

• Prompt light emission by Ar2*+ starts clock

• Electrons drift to the anode (Ar+ ions to the 
cathode)

• Moving electrons induce currents on wires

• Tracks are reconstructed from wire 
signals:

• Two dimensions from wires

• Drift distance is found from knowing t0 
& vd → Time projection!
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potential

• MINOS event display:

• MiniBooNE event display:

• Super-K event display:

• MicroBooNE:
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Let’s See Some Event Displays

• LArTPCs have great imaging 
potential

• MINOS event display:

• MiniBooNE event display:

• Super-K event display:

• MicroBooNE:

• Gorgeous pictures from A. 
Szelc:
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Requirements for a TPC (some technical 
challenges)

• Read Out Wires & Electronics

• PMTs (some sort of timing 
information)

• Purity of Liquid Argon

• Signal electrons can be lost by 
electro-negative impurities

• Cathode High Voltage

• More fiducial space --> greater 
Vcathode to maintain electric field

• Higher Vcathode can lead to stability 
issues
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Read Out Wires (Highlighting MicroBooNE)
• Wires are 150 μm stainless with 2 μm thick 

copper plating with a thin flash of gold 
• The 150 μm is large enough to withstand the 

tension; the copper reduces the resistance, 
and the gold prevents copper oxidation

• Similar coefficient of thermal expansion to 
the anode frame -- reduces change in T

• Wires are terminated on end by several twists 
around a brass ring that connects to the wire 
carrier board

• BNL tested soldering & crimping, Winding 
was the best termination

• The tension is set to 0.7 kg
• to prevent wire sag greater than 0.5 mm (for 

any 5 m long wire), and 
• to prevent wire breakage during cool down
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Wire Planes

• U & V Planes are induction sense wires 
(bipolar signal as the electrons pass by)

• Y Plane is the collection plane -- should 
collect the electrons and see a unipolar 
signal

• Potentials must be set to allow the 
electrons to pass through the U & V 
planes to be collected by the Y plane

• This condition is described in 
Bunemann et al., Canadian Journal of 
Research, v27, pp191-206 (lartpc 
docdb 23)
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• U & V Planes are induction sense wires 
(bipolar signal as the electrons pass by)

• Y Plane is the collection plane -- should 
collect the electrons and see a unipolar 
signal

• Potentials must be set to allow the 
electrons to pass through the U & V 
planes to be collected by the Y plane

• This condition is described in 
Bunemann et al., Canadian Journal of 
Research, v27, pp191-206 (lartpc 
docdb 23)

• U Wires are set to -200 V, V Wires are 0 
V, and Y Wires are set to 440 V
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One Slide on Electronics

• The wires have to be 
read out

• I’m not going to go into 
depth on this or anything 
down stream (DAQ etc)

• A note, the 
motherboards can go in 
the argon

• Less noise --> Better 
S/N!
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wires (B.Yu, BNL)

• I saw this effect in (Long) Bo 
data:
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Purity

• Typical requirements are ~ 100 
ppt O2 and < 1 ppm N2

• O2 is electronegative -- 
captures signal electrons

• N2 quenches light

• Materials are tested at the 
Materials Test Stand at PAB 
before going into a cryostat

• We don’t want anything to 
“poison” the argon; 
outgassing in the gas space 
can be bad

• We can purify the LAr with filters:

Condenser 
Cu O2 filter 

Mole sieve 

LAr cryostat 

LAr pump 

LAr 

GAr 
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Purge

• Previous experiments evacuated their 
cryostat to get to the purity they need
• ICARUS, Argoneut

• LAPD showed that purity requirements 
could be attained without the need for 
evacuating (~30 ton vessel)
• They employed an argon-gas piston
• O2:  21% to 6 ppm
• N2: 78% to 18 ppm
• H2O: 200 ppm to 1.2 ppm

• This is important because it costs $$$ to 
make a cryostat that can be evacuated

19
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More Comments on Purity & Purging
• Even though Argoneut evacuated, 

their purity could have been improved 
upon
• The system condensed argon from 

the gas space (good -- a lot of 
impurities live here) and filtered it

• But a faster filtration rate (pumps) 
would lead to better purity

• Lesson -- evacuation is not a cure all!

20

CryoCooler 

Cryostat 

400 ppt --> ~0.75 ms
ht

tp
://

ar
xi

v.o
rg

/a
bs

/1
20

5.
67

47

http://arxiv.org/abs/1205.6747
http://arxiv.org/abs/1205.6747
http://arxiv.org/abs/1205.6747
http://arxiv.org/abs/1205.6747


IF Summer Lecture Series 2014:  LArTPCs July 17, 2014 S. Lockwitz

Monitoring Purity
• Purity monitors placed in the 

tank and in the cryosystem 
will give attenuation 
measurements

• Use a xenon flash lamp on 
a photocathode

• Cathode signal is Q0, 
anode is Q

Q0
Q = etd/⌧

LAPD Clean Up

21

Design based on ICARUS

It’s like a little TPC...
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Cathode High Voltage

• Again, a high voltage on the 
cathode supplies the drift field

• A Cockcroft-Walton/
Greinacher system generates 
the HV inside of the cryostat

• ARGONTUBE at Bern uses 
this

• 5 m drift

• Able to get to 125 kV 
(stable; E = 250 V/cm); 
150 kV max ht

tp
://

ar
xiv

.o
rg

/p
df

/1
30

4.
69

61
v2

.p
df

22
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Cathode High Voltage

• Or the high voltage can be made 
outside of the cryostat and 
connected to the cathode via an HV 
feedthrough

• This is what MicroBooNE 
(among others) uses

• Can buy supplies (-150 kV 
Glassman)

• Have to make the feedthrough

23
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Feedthrough

• Needs to take 100+ kV into a 
cryostat

• Maintain a good seal from 
room temperature to 87 K

• Inner stainless steel conductor

• Inserted into UHMW PE 
insulator

• Outer ground tube is cryo-fit 
over

• Flange/warm part makes a 
tight seal

TPC

Cryostat W
all

Fe
ed

th
ro

ug
h

Insulator Grooves

Torus (protective 
blue tape on it)

24
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HV an Aside

• There’s a lot of energy stored 
upstream of the FT

• It there was a discharge, this 
could put a lot of energy into 
the TPC

• So we isolate the system by 
putting a filter pot in between

• “Filter” refers to this low 
pass filter

• Only this part will quickly 
enter the cryostat.  

25

HV 
Supply

Cable

To Cathode

HV FT:

~500 pF

~200 pF

~300 pF

R=75MOhm
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Other Things Related to HV
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Understanding Breakdown in LAr

• We recently set out to 
understand more about LAr 
dielectric strength

• Performed a series of 
breakdown measurements 
within the uB phase I 
cyrosystem

• Wanted to study size effects 
(distance & feature size) and 
purity effects

27

Cryostat

Purity 
Monitor

⚡



IF Summer Lecture Series 2014:  LArTPCs July 17, 2014 S. Lockwitz

Understanding Breakdown in LAr

• We recently set out to 
understand more about LAr 
dielectric strength

• Performed a series of 
breakdown measurements 
within the uB phase I 
cyrosystem

• Wanted to study size effects 
(distance & feature size) and 
purity effects

27

Cryostat

Purity 
Monitor

⚡

3 in
5 mm

1.3 mm



IF Summer Lecture Series 2014:  LArTPCs July 17, 2014 S. Lockwitz

Understanding Breakdown in LAr

• We recently set out to 
understand more about LAr 
dielectric strength

• Performed a series of 
breakdown measurements 
within the uB phase I 
cyrosystem

• Wanted to study size effects 
(distance & feature size) and 
purity effects

27

Cryostat

Purity 
Monitor

⚡



IF Summer Lecture Series 2014:  LArTPCs July 17, 2014 S. Lockwitz

Understanding Breakdown in LAr

• We recently set out to 
understand more about LAr 
dielectric strength

• Performed a series of 
breakdown measurements 
within the uB phase I 
cyrosystem

• Wanted to study size effects 
(distance & feature size) and 
purity effects

27

Cryostat

Purity 
Monitor

⚡

⚡



IF Summer Lecture Series 2014:  LArTPCs July 17, 2014 S. Lockwitz

Understanding Breakdown in LAr
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understand more about LAr 
dielectric strength
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Understanding Breakdown in LAr

• We would increase the voltage 
until breakdown

• We tested a number of distances 
for each probe tip

• Data for a given day’s work 
looked like:

28
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Testing Pieces for Breakdown

• We had a number of 
features in the 
MicroBooNE TPC we 
were worried about

• Screw heads on the 
TPC tubes -- could 
these cause LAr 
breakdown?

• We did a test in air:

• We rotated all screw 
heads and modified 
some other pieces

29

Feature at HV
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ICARUS

• Pioneer in the field

• Proposed by C. Rubbia in 1977

• ICARUS T600

• 2001 Pavia:  100 days on 
surface

• 2010-2013 Gran Sasso:   filled 
with 760 tons LAr (477 t)

• 1.5 m drift; 75 kV on cathode

30
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Experiments

• Argontube (Bern):  0.2 m3, Ld = 5 m

• Argoneut:  0.17 m3, Ld = 0.9 m.  Placed 
in the NuMI beam line in 2009 
(between Minerva & MINOS).  Neutrino 
publications

• MicroBooNE:  ~64m3, 2.56 m = Ld 
(size of school bus).  In Booster beam; 
will turn on at the end of the year.

• Long Bo (Bo):  0.1 m3, Ld=2m.  Placed 
in LAPD last year (Bo is one section).  
Cosmic data 

• CAPTAIN (Los Alamos):  Idea is to have 
a mobile cryostat.  0.3 m3; Ld=1m

31
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A Few Words on LArIAT

• Resurrected Argoneut -- but better!

• Going in a test beam

• (Not looking for neutrinos or specifically 
looking at cosmic rays)

• Will improve our understanding of how 
charged particles interact in LAr

• Light collection is different

• Walls of TPC have the wavelength-
shifting coating

• Want to increase light yield --> improve 
energy resolution

• Start running by the end of the year

32
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Future Experiments

• LBNE(F):  Proposed detector in 
Lead, SD.  ~2025+

• 35T:  R&D/Prototyping for 
LBNE; membrane cryostat 
(same as Natural Gas 
tankers)

• LAr1:  FNAL short baseline 
(BNB); 129m3 or 180 ton mass; 
membrane cryostat.  Plan is for 
data in 2018

• GLACIER:  European effort; R&D 
stages; 20 m drift, 20-50 kt; 
cathode HV at the MV scale
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Closing Thoughts...

• I did not cover

• Physics potential & event reconstruction efforts

• Dual phase LArTPCs (used in dark matter searches)

• My apologies if I forgot your favorite LArTPC in the review (feel free to tell 
me about it)

• LArTPCs are a rich area of research right now -- lots of physics on the horizon 
& (fun) R&D taking place!

34
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VBreakdown vs. Distance

37

• Plotted average Vbd at a given distance for a given date’s data (specific purity 
and probe)
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EMax vs Distance

• Doesn’t appear to be just Emax

38
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Other Quantities of Interest
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Other Quantities of Interest

• Literature suggests a dependence of breakdown voltage on area 
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Gerhold et al., Cryogenics (1994)

Stressed area, peak field is at the 
star, shaded pink has E>80%*Emax
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Other Quantities of Interest

• Emax vs Area (80% Emax left; 90% right)
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Comparison with another test...

• Last summer we did a breakdown 
test in LAPD

• We had a 2.5” sphere within a 
grounded cylinder with a ~4.9 mm 
gap

• We recorded data with this fixed 
distance, but...

• There was an issue where a screw 
was found to be broken after removal 
• (so we likely will not publish this)

41

4.9 mm
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Comparison with another test...

• If we assume the device was ok during the testing, 
• We have something with an order of magnitude more stressed area

• (80%:  37.6 cm2, 90%:  24.7 cm2; Emax: ~52 kV/cm)
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